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Abstract

The aim of this research paper is to establish the Hardy-type inequalities for Hilfer fractional
derivative and generalized fractional integral involving Mittag-Leffler function in its kernel
using convex and increasing functions.
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1 Introduction
The Hardy inequality states that:

]O io/xf(y)dy p < (pfl)p(]of”(x)dz, p>1,

0

where equality holds only if f = 0 introduced by G. H. Hardy in [1]. It is one of the most important
inequality of analysis. Such an inequality is broadly applied to various fascinating problems in
partial differential equations such as eigenvalue and boundary value problems. It also been stud-
ied for vector field as well. A variety of mathematicians [2-7] awarded the generalizations and
improvements of Hardy’s inequality. In this paper, we establish some more general inequalities
of G. H. Hardy given in [6,7] and applications of such inequalities for Hilfer fractional derivative
and generalized fractional integral containing Mittag-Lefller function in its kernel via convex and
increasing functions. We first need the following basic definition of convex function and elementary
information about a particular class of function.
The following definition is given in [8].

Definition 1.1. Let I be an interval in R. A function ¢ : I — R is called convex if

oAz + (1= Ny) < Ap(z) + (1 = Ne(y), (1.1)

for all points x,y € I and all A € [0,1]. The function ¢ is strictly convex if inequality (1.1) holds
strictly for all distinct points in I and A € (0,1).
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Let (X1,Q1, p1) and (32, Q9, uo) be measure spaces with positive o-finite measures. Let U(f)
denote the class of functions g : {2y — R with the representation

o(z) = / ko, 9) f(9)dpia(y),

Q2
and Aj be an integral operator defined by

gz) 1
K(r)  K(z) /k(x’y)f(y)duz(y%

Qo

Apf(x) =

where k : 1 x 3 — R is measurable and non-negative kernel, f : Q5 — R is measurable function
and

0< K(x):= /k‘(m,y)d,ug(y), x € Q. (1.2)
Qs
The upcoming result is given in [6].
Theorem 1.2. Let u be a weight function on 21, k£ a non-negative measurable function on €27 x 2

and K is defined on €; by (1.2). Assume that the function z — u(z) kl((f’my)) is integrable on 4 for
each fixed y € 2. Define v on {25 by

k(z,y)
v(y) == / u(x dpy(z) < oc.
W)= | un) @
If ¢ : (0,00) — R is convex and increasing function, then the inequality

/Ql u(@)e <’;g((é))’) dp (z) < /92 v()e(f(y))duz(y) (1.3)

holds for all measurable functions f : Qs — R.

By substituting k(z,y) by k(z,y) f2(y) and f by %, where f; : Qo — R, (¢ = 1, 2) are measurable
2
functions in Theorem 1.2, then the following result is obtained (see [9, p. 220]).

Theorem 1.3. Let f; : Q2 — R be measurable functions, g; € U(f;), (¢ = 1,2), where ga(z) > 0
for every x € 1. Let u be a weight function on 2 and k a non-negative measurable function on
1 x Q9. Assume that the function z — u(m)% is integrable on € for each fixed y € Q5.
Define v on Q5 by
u(@)k(z,y)
v(y) = ——————=dpi(z) < oo.
(y) f2(y)/ 92(2) p1 ()

1

If ¢ : (0,00) — R is convex and increasing function, then the inequality
g91(x)

S!u(x)@ ( @) ) dp (x) SSZv(y)ap( 28; D dpa(y)

holds.
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The upcoming result is given in [7].

Theorem 1.4. Let (X1,Q1, p1) and (3o, Qa, ua) be measure spaces with o-finite measures, u be a
weight function on 7, k a non-negative measurable function on 21 x Q5. Let 0 < p < ¢ < 00, K
be defined on ; and the function = — u(x) kl((gi;’)) is integrable on 2 for each fixed y € Q9, then v

is defined as:

o= | [ u(x)(k&g’)gdmm e

1

If ¢ is non-negative convex function on the interval I C R, then the inequality

1

[ u@) e @ut@) din@)| < | [ ol () i)
1 2
holds for all measurable functions f : Q9 — R such that Imf C I.
Next result is represented in [7].

Theorem 1.5. Let g; € U(f;), (i = 1,2,3), where ga(z) > 0 for every x € ;. Let u be a weight
function on 1, k a non-negative measurable function on 21 x s, then v is defined by

v(y) = fz(y)/w

dr < oo.
92(z)

If ¢ : (0,00) x (0,00) = R is a convex and increasing function, then the inequality
91(z)| |gs(z)

SZ @ (5] 4o < Q/ e (|35 oy ) a0

) 7

holds.

Next we give the well known definition of Riemann-Liouville fractional integrals (see [10, p.
69-71]).
Definition 1.6. Let [a,b] be a finite interval on R. The left and right sided Riemann-Liouville
fractional integrals I, f and I;* f of order a > 0 are defined as:

x

18, f(z) = ﬁ / (- 9)* " f(y)dy.z > a,

and
b

I f(x) = ﬁ / (v — 2)° f(y)dy, z < b,

x

respectively. Here I' represents Gamma function.

The paper is organized as follows: After introduction in Section 2, we present the Hardy-type
inequalities for Hilfer fractional derivative. Section 3 consists of results for generalized fractional
integral which involve the Mittag-Leffler function in its kernel.
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2 Hardy-type Inequalities for Hilfer fractional derivative

In this section, we give the basic definitions of Hilfer fractional derivative, then we present Hardy-
type inequalities for the said derivative. But before this, we first recall the well known definition of
absolutely continuous function (see [7, p. 9]).

Definition 2.1. Let 0 < a < b < 0o. By C™[a, b] we denote the space of all functions on [a, b] which
have continuous derivatives up to order n and AC|[a,b] is the space of all absolutely continuous
functions on [a,b]. By AC"[a,b], we denote the space of all functions f € C" [a, b] with f(*~1) €
ACa,b).

Let us now recall the definition of Hilfer fractional derivative given in [11].

Definition 2.2. Let f € L'[a,b], f * K1_,)(1-p) € AC'[a,b]. The fractional derivative operator
D! of order 0 < pu < 1 and type 0 < v < 1 with respect to « € [a, b] is defined by

(D22 F) () o= 140 (10007 £ (21)

whenever the right hand side exists. The derivative (2.1) is usually called Hilfer fractional derivative.

The more general integral representation of equation (2.1) given in [12] define as: Let f €
L [a,b], f* Ka—vyn—p) € AC™[a,b],n—1< p<n,0<v<1,n¢€N, then the following equation

holds true: n
(DEYT) (2) = (Isi”‘“)dxn (Iéi‘””"‘“’f(x))) . (2:2)

Specially for v = 0, Dfl‘f f=D~ . f is a Riemann- Liouvile fractional derivative of order p and for
v =1 it is a Caputo fractional derivative DZJFI f=¢ D* . f of order pu. Applying the properties of
Riemann-Liouvile integral the relation (2.2) can be rewritten in the form:

(IZJ(:L—M) ((DZ;(l_V)("_”)f) (x)))

xT

R e (R IO

a

(DL f) (@)

Our first result is given in upcoming theorem.

Theorem 2.3. Let n—1<pu<n, 0<v<1,neN 0<p<
L% (a,b), then the following inequality holds true:

/\ (D2 1) \qu<0/\ D g )

m, q > 1. If Dgiy(niﬂ)f S

dy, (2.3)

(b—a)9v(n—1)
((w(n—p)—1)p+1)7/?(qu(n—p))

1,1 _ _ 1
where sto= land C = OCET)E
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Proof. Since

x

)@ < gy | @0 (D) ) an

a

(ot

Using Holder’s inequality for {p, ¢} the above inequality becomes

(D f) (@)]
" 1/q
S s (i_u)) / (x—y)(”("*“)*””dy / (D=1 ) )y
1 (& — a) =1+ 5 e
<

T =) (v (n—p)—1)p+ 1) /\ (D= 1) )| dy

Thus we have

1 (x — a)Q[V n—p)—1]+

ST ) (wn—p-pr q/p/‘ Pi 0 s) wl

(D f) @)

Integrating both sides from a to b gives inequality (2.3).
If in particular we take v = 1, we obtain the upcoming result given in [6].

Remark 24. Letn—1<pu<n,neN,0<p< ﬁ, q> 1.1 f0 € L9(a,b), then the
following inequality holds true:

b b
/I(CD5+ ) (@)["de < C/ £ ()

1 1 _ N 1 (b_a)q(n*u)
where 54 ¢ =1 and €' = =y (- Dp - 07 )

The upcoming corollary is a special case of Theorem 1.2 for Hilfer fractional derivative.

Corollary 2.5. Let u be a weight function on (a,b) and let n — 1 < p < n,0 <v <1,n € N. Let
f € L(a,b) and define v on (a,b) by

b u(n pn)—1
v (y) /u V(n ") —————dz < 0.
Y
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If o : (0,00) = R is a convex and increasing function, then the inequality

b
[uwe (F(” (=W 1) per ) <x>|> da

J (x — a)V(n—u)

b
< [owe (P s) w)]) o (24)

holds true.
Proof. Applying Theorem 1.2 with Q1 = Qo = (a,b), du (z) = dz, dus(y) = dy

(xfy)”("_“)_l a < Yy <
k(x,y) = Tw(n—p) =J ="
0, r<y<b,

and K (z) = % Replace f by Df;j”(”*“)f and g (z) = (D4 f) (z), we obtain inequality
(2.4).

Specially for v = 1, we obtain Corollary 2.9 of [6].

Remark 2.6. Choose u(z) = (z — a)”("*) a particular weight on (a,b) in Corollary 2.5, then we
obtain the following inequality:

:ZCEaymm¢<rgf?®51:j)(D$?>($)>dm

b

< /%b—yVm‘”@<KDZV“5”f)@ﬂ)dy (2.5)

a

Although (1.3) holds for all convex and increasing functions but some choices of ¢ are of particular
interest. Namely, we shall consider power function. Let ¢ > 1 and the function ¢ : R — R be
defined by ¢(z) = 29, then (2.5) reduces to

b
< [Jo-gren| (D s) w)| (26)
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Since z € (a,b) and v(n — u)(1 — ¢) < 0, then we obtain that the left-hand side of (2.6) satisfies

b q
[y (F e D <x>|> a

(r—a
b
> - "D @ - ) + 1) [ (D82 1) @) d, (2.7)

a

and the right-hand side of (2.6) satisfies

b

Jo—wro (|(pe5) o

a

< (b—a) ™M j7 -Dﬁi”““””f)(yﬂ)qdy. (2.8)

)

Combining (2.6), (2.7) and (2.8) we get

un nw a b
Jiozsmoraes (G2 i)

Taking power % on both sides, we obtain

) b gy )
1DE g, < (M) | g

)qdy.

T'(v(in—p)+

Remark 2.7. In particular if v = 0 inequality (2.6) represents inequality of G. H. Hardy for
Riemann-Liouvile fractional derivative of order p and for v = 1 it becomes inequality of G. H.
Hardy for Caputo fractional derivative of order .

Corollary 2.8. Let u be a weight function on (a,b) andlet n —1 < p<n, 0<v <1, neN
Define v on (a,b) as

b
D,quun ) V(” -1
( f /u ————dzr < oo.
Yy

U(y)_ F Dp,l/ )( )

If ¢ : (0,00) — R is convex and increasing function, then the inequality

b (pern) @[\ o ) s
/u(x)@ W RS a/v(y)so ‘(ngy(nfu)fg)(y)’ Yy ( . )

a

holds true for all f; € L'[a, b].

Unauthenticated
Download Date | 2/28/18 7:59 AM



82 S. Igbal, J. Pecari¢, M. Samraiz, Z. Tomovski
Proof. Applying Theorem 1.3 with Q1 = Qo = (a,b), du (z) = dz, dus(y) = dy

(I*y)y(n_w_l a < <z
E(z,y) = Tvn—p)) @ *=Y=
0, r<y<b,
and replace f; by Dgi'u(n_“)fi7 (i=1,2) and g; = DL fi, (i = 1,2), we get inequality (2.9).

In particular if we take v = 1, we obtain Corollary 3.14 of [13].
The upcoming corollary is the generalization of Corollary 2.5.

Corollary 2.9. Let 0 < p < ¢ < 0o,u be a weight function on (a,b),n —1< p<mn,0<v <1,
n € N. Let D!’” be the left sided Hilfer fractional derivative and v is defined on (a, b) by

(& =y
(x — a)”(n*#)

o(y) = v(n — ) jmm(

Y

> dx < 00.

If ¢ is a non-negative increasing convex function on an interval I C R, then the following inequality

q

/b“(x) <90 (W (Dt f) (x)>)p ]
: /b v ((2677) ) dy ; (2.10)

a

holds true for all measurable functions f : (a,b) — R such that Ingiy(nfu)f Cc1I

Proof. Applying Theorem 1.4 with 1 = Qs = (a,b), du (z) = dz, dus(y) = dy

(m_y)u(niwil a < <
k(z,y) = Twim—m) @ *=Y=T5
0, x<y<b,

. (x,a)u(n—u)

and K (z) = 1551y
(2.10).

Replace f by DZI”("_“)f and g (z) = (D! f) (), we obtain inequality

v(n—p)

Example 2.10. If DY is the Hilfer fractional derivative, u(z) = (x —y)~ » * is a particular
weight and ¢(x) = 2°, s > 1,2 > 0 is convex, then after some calculation we obtain the following
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inequality:

j( 1 f(2) 7 da

(v(n—p)r (b— G)W
((u(n —pE+ 1)) STl —p) +1))F

b

x / ((DZIV(”f“)f) (y))s dy

a

T =

IA

Theorem 2.11. Let u be a weight function, n—1 < g <n,0<v <1,n € Nand let D" f be the
u(a;)(Dle'u(" M)f2>(,g (z— U)V(n u)—1
T (=) (D 12)(@)

Hilfer fractional derivative. If f; € L[a,b],0 < a < b < co and z —

is integrable over (a,b), then v(y) is defined by

B (ng_-l/(n—ﬂ)fz) (y) b (x B y)v(n—#)—l
W) = o =) /“”@mma@g

dx.

Yy

b

o (| (PR ) @
/()¢Q@w”)w>

a

If ¢ : (0,00) x (0,00) = R is a convex and increasing function, then the inequality
(De f5) (x)

i)

b D/H—V(n u) D’;+V("_“)f )
< a/v(y)w EDumn ) fig EDZ;”(””)fzg » dy (2.11)

holds true.
Proof. Applying Theorem 1.5 with with Q; = Qs = (a,b), du1 (z) = dz, dus(y) = dy

r<y<b,

)

(xfy)”(" w1 a < Yy < x:
k(x,y) = Tw(n—p) = ="

v(n—p)

and K (z) = (e—a)’ . Replace f; by D”J”'(" 2 fi and g; (z) = (D4 f;) (z) to obtain inequality

T'(v(n—p)+1)
(2.11).

Remark 2.12. In particular if we choose v =1 in Theorem 2.11, then v(y) can be written as:

b

(") IIZ* (n—p)—1
U(y)i /u *af2)( ) dx’

Y
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and inequality (2.11) represents results for Caputo fractional derivative which is given as:

s (| Bt | L)
£ )

b
dy.
o ) !

< / v(y)<p<
3 Hardy-type Inequalities for generalized fractional derivative
involving Mittag-Leffler function in its kernel

(Dfa fd) (CL‘)
(Diaf2) (x)

)

fln) (y)
)

)

First, we survey some facts about fractional integral operator which contain 6 parameter Mittag-
Leffler function in the kernal (see [14, p. 1-13]), then we present Hardy-type inequalities for that
integral operator.

Definition 3.1. Let a, 8,7, € C;min{R(a),R(B), R(7),R(6)} > 0;p,q > 0 and ¢ < Ra + p,
then the integral operator defined by
)9, _ - 9, a
(250 r9) @) = [ 2= 0 EZ Gl — 1) gt
which contains the generalized Mittag-Leffler function

oo n

B0 = X Fan S &

in its kernel is investigated and its boundedness is proved under certain conditions. The function
(3.1) represents all the previous generalizations of Mittag-Leffler function by setting

e p=gq=1, it reduces to Elg(z) = Zo %ﬁ defined by Salim in [15].

n

e § =p=1,it represents E)'%(2) = > Wan 2+ which was introduced by A. K. Shukla and
n=0

T'(an+8) n

J. C. Prajapati in [16]. In [17] H. M. Srivastava and Z. Tomovski investigated the properties
of this function and its existence for a wider set of parameters.

e § =p=q =1, the operator (3.1) is defined by Prabhakar in [18] and is denoted as: E 4(z) =

= (M 2m

n zZ
Z T'(an+pB) n!"
n=0

ey =0=p=gq =1, it reduces to Wiman’s function presented in [19], moreover if § = 1,
Mittag-Leffler function E,(z) will be the result.

Lemma 3.2. Let a, 3,7,6,w > 0;p,q > 0,9 < Ra + p and take el”éﬁ’gy’w () = xﬁ_lE;::g’z) (wz®).
Then the following integral holds true:

xT

6, ,5,
[ e ndy=it, -0,

a
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Proof. Consider

x x

) — ,9, a
/ € ppew (T —Y)dy = /(fﬂ — ) T BN (w(m — y)*)dy

a a

= Jewm Y Gy

@ n=0
_ = ('7)qn (w)’ﬂ [ T an+B-1
a nE::O L(an + B)(0)pn a/( 2 dy
= (@—a) EPY, (w(z —a)®)

0,
= Calftipw (@ a).
This completes the lemma. It also holds for 3 parameter functions e/, 5 , (z) = R Ol g (wz?).
The upcoming corollary represents Theorem 1.2 for fractional integral involving Mittag-Leffler
function in its kernel.

Corollary 3.3. Let u be a weight function on (a,b) and «, 8,7 > 0. Let f € L(a,b) and v is
defined on (a,b) by

u( dr < 0.
«

/b y‘* VB, (w(@—y)%)
J EW,B-H (w(z—a)

If ¢ : (0,00) — R is a convex and increasing function, then the following inequality

b o - b
/ u(z) @ ( Ks‘”’ﬁ’“’”*f)()‘ dr < /v(y)so(lf(y)l)dy (3.2)

v—a)’ B] gy (@ (2 —a))

a a

holds.
Proof. Applying Theorem 1.2 with Q1 = Qs = (a,b), du (z) = dz, dus(y) = dy

(-9’ Bl (w(@-y)®), a<y<um
0, z<y<b,

k(x,y)—{

K(2) = (¢ —a)’ E) 4, (w(x - a)*). Taking g() = (sg) et f) (z), we get inequality (3.2).
Next result is an extension of Corollary 3.3.

Corollary 3.4. Let u be a weight function on (a,b) and let «, 3,7, d,w be positive real numbers.
Also p,q > 0 and ¢ < Ra + p. Let f € L(a,b) and define v on (a,b) by

b -1 5 a
E’Y; sq wl(r —
/u I G PR
/ o) B3, (e —a)°)
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If o : (0,00) = R is a convex and increasing function, then the inequality

b )
/“(x)so ( KQMWJ)( )) dz <

4,
J ~ By, @ - a))

v(y) e (f W) dy (3-3)

S

holds true.
Proof. Applying Theorem 1.2 with 1 = Qs = (a,b), dpi(x) = dx,dus2(y) = dy
k(z,y) = (x—y)" B W@ —y)"), a<y<uz
0, z<y<b,

and K (z) = (z — a) E'y,gin (w(z —a)”). Taking g (z) = ( D a+f) (z), we get inequality
(3.3).
Corollary 3.5. Let the assumptions of Corollary 3.4 be satisfied and v on (a,b) is defined by

b

T — B—1E7:57q wlz — )
v(y) _f2(y)/U(:c)( v) oy (W@ —y)%)

6,
El quw a+f2<x)

dx.

Yy

If ¢ : (0,00) — R is convex and increasing function, then the following inequality

/bu(x)@ E qup w?;i ; du < /bv(yw( 285’) dy (3.4)
a Bopwat? /

holds for all measurable functions f; : Qs — R, (i =1,2).

Proof. Applying Theorem 1.3 with Q1 = Qs = (a,b), du (z) = dz, dus(y) = dy

z— )P IETS (w(z —y)Y), a<y<uz
k(:v,y):{é y> o, ’P<( y)) szzb

K (z) = (v — a) Eg’fz’il p(w(T— a)®). Taking g;(z) = (gzv%qu ot fi) (x), we get inequality (3.4).

Remark 3.6. If we choose w = 0 in Corollary 3.5, then we obtained Corollary 3.11 of [7, p. 44]
for left sided Riemann-Liouville fractional integral operator.

We next give Hardy-type inequality for generalized fractional integral operator involving gener-
alized Mittag-Leffler function in its kernel.

Theorem 3.7. Let p,q > 1 such that %—i—% =landa,B,v,0,w>0.1If f € L9 (a,b),0 < a <b < o0,
then the inequality

/ b
/‘(63:%7%%]0) (ff)’qd:v < C/|f(x)‘q dx

q
holds true, where C' = {el’%ilp’w (b— a)} .
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Hardy-type inequalities for generalized fractional integral operators 87

Proof. Applying Holder’s inequality, we have

x

)9, )6,
(25enet) @] < [l @) 1f)dy
x l/p T 1/‘1
P
< | [laspee-va) | [irora
T b 1/q
<

[esno@-va| | [

a
1/q

b
e o) { [ 1@ o

Thus we have

b
() @ < [t @0 | [ 1@z ).

for every z € [a,b]. Integrating on both sides from a to b, we get

b

b
q q
[ Fbaat@f @ = | [ —a] ae | { [isras

a a

b
/ﬂ/f;il,pw —a)dx /|f(as)\qu

IA

Applying Lemma 3.2, we obtain

b

/

a

q q
et @) o < (0,0 0= )" | [ 1f@) da

Corollary 3.8. Let u(z) be a weight function on (a,b) and let a, 8,7, d,w > 0;p,¢ > 0,9 < Ra+p.
Define v on (a,b) by

’ z— )P TLEYS (b (x—y)® g
o (y) = /u($)<( )" BV (w(z—y) )dx> o

(z—a)’ E}5L,, (w(x —a)%)
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If p: I — R is a convex and increasing function, then the inequality

b R
A
/ (r—a) BJ%0, (w(e—a))
. .
< / v () o (1 W)]) dy (3.5)

holds true for all measurable functions f : (a.b) — R such that Imf C I.

Proof. Applying Theorem 1.4 with 1 = Qs = (a,b), du (z) = dz, dus(y) = dy

(=) LEXY (w(z—y)*), a<y<a

0, r <y <bh,

M%w{

g=¢er ‘;’qp w.at [+ We get inequality (3.5).

The upcoming result is an application of Theorem 1.5.

Corollary 3.9. Let u be a weight function and «, 3,7, d,w be the positive real numbers. If f; €
L(a,b),0<a<b<oo,p,q>0, then v(y) is defined by

b
i [ 10 =)
Y

agpwaJer( )

If ¢ : (0,00) x (0,00) = R is a convex and increasing function, then the inequality

b b
Tt @] |5 s @) 1)| | A
a,f,p,w,at a,B,p,w,at 1y 3y
a/ u(x)sO(ez:%?p,w,wfz(w) L e F2(2) )d“a/ o7l [mm) e o

holds true.

Remark 3.10. If in particular we choose w = 0 in Corollary 3.9, then v(y) becomes

b
f2 u(x !
Iﬁ f dx,
Y ar /2

and inequality (3.6) can be written as:

jM@w(

a

If+f3(m)
’ If+f2(x)

154— fi (I)
If+ fa(z)

f1(y) ‘
f2(y) ’

ik

oo [
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